If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2+6x=0
a = 121; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·121·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*121}=\frac{-12}{242} =-6/121 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*121}=\frac{0}{242} =0 $
| 7(3n+2)=7(5n+7)+4 | | 7.5+x=-2/5 | | 4y+1.5=13.5 | | Z/1/3+z/3=1/3 | | 4(x+7)=2x+80 | | 8.3x-5.39=63.5 | | 12^(x-1)=7x | | 5y-8y+2=-5 | | 2/x+1/x+12=5x-8/x^2+12 | | 3+4x-2x.x=0 | | 4(x-2)/2=4(x+2)/10 | | 5y-8y+2=15 | | x-0.40x=17.70 | | 19.1+5x=15.55+6x | | -16t^2+80t+19=83 | | 36x+9x+5=(2x+3)(3x+2) | | x/4+5x/2=6 | | x/3+14=20 | | 3/4x+1/3=5 | | 8z=44 | | -10x+25=-5 | | 4(3x-4)+20=28 | | 3/5x+4=43 | | S=8t-t^2 | | 3(1-3x=-8x+14 | | -7(-8a-7)=-7(1-7a)+7 | | 6(x+7)^2=12 | | -2y+34=3y-26 | | 48=-6x-4x+1 | | 5x=7x+7 | | (x-1)(x+2)-1(2x-3)(x+4)-x+14=0 | | q-25=-19 |